AD-777 957

LANGUAGE-INDEPENDENT PROGRAMMER'S INTERFACE

UNIVERSITY OF SOUTHERM CALIFORNIA

PREPARED FOR
ApVANCED RESEARCH PROJECTS AGENCY

MAarRcH 1974

DISTRIBUTED BY:

NS,

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

T e 7 D

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
1. KEPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
ISI/RR-73-15 AN 77725
4. TITLE (and Subtitie) 5. TYPE OF REPORT & PERIOD COVERED
Language-Independent Programmer's Interface Research Report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(®) - 8. CONTRACT OR GRANT NUMBER(s)
Robert M. Balzer DAHC 15 72 C 0308

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
USC/Information Science: Institute AREA & WORK UNIT NUMBERS
4676 Admiralty Way ARPA Order No. 2223/1
Marina del Rey, California 90291

11. CONTROLLING NFFICE NAME AND ADDRESS 12. REPORT DATE
Advanced Research Projects Agency March 1974
1400 Wilson Blvd. 13 _WUMBER OF PAGES
Arlington, Virginia 22209 7

-t

4

MONITORING AGENCY NAME & ADDRESS(!! dilferent from Controfling Office) 1S. SECURITY CL ASS. (of thie report)

none

15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

. DISTRIBUTION STATEMENT (of thie Report)

Distribution unlimited. Available from National Technical Information Service,
Springfield, Virginia 22151,

. DISTRIBUTION STATEMENT (of the ebetrec! entered in Block 20, ! dillerent from Report)

. SUPPLEMENTARY NOTES

This paper will be given at *he National Computer Conference and Exposition,
Chicago, Illinois, May 6-10, 1974. It will also appear in the AFIPS Conference
Proceedings, Vol. 43, AFIPS Press, IMontvale, New Jersey, 1774,

. KEY WORDS (Continue on reveree eide il necessary and identily by block number)

BBN-LISP and EL/1, domain-independent, human-engineered, interactive system,
programming system, programming environment,

20,

ABSTRACT (Continue on reveree side If necessary and {dentify by block number)

PRGE V

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Commerce
Springfield VA 22151

DD 152:';3 1473 EDITION OF 1 NOV 65 1S OBSOLETE

S/N 0102-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Robert M. Balzer

UNIVERSITY OF SOUTHERN CAUIFORNIA

ARPA ORDER NO. 2223/1

ISI/RR-73-15
March 1974

Language-Independent Programrer’s Interface

INI ORMATION SCIENCES INSTITUTE

NO. 2223/1. PROGRAM COOE NO. 3D30 ANO 3P10

4676 Admiralty Way/ Marina del Rey [California 9091
(215)822-1511

THIS RESEARCH 1S SUPPORTEO Br THE ADVANCEO RESEARCH PROJECTS AGENCY UNDER CONTRACT NO DAHCI15 72 C O30B, ARPA OROER

VIEWS ANO CONCLUSIONS CONTAINED IN THIS STUOY ARE THE AUTHOR'S AND SHOULD NOT BE INTERPRETEO AS REPRESENTING THE
OFFICIAL OPINION OR POLICY OF THE UNIVERSITY OF SOUTHERN CALIFORNIA OR ANY OTHER PERSON OR AGENCY CONNECTED WITH IT.

“HIS DOCUMENT APPROVEO FOR PUBLIC RELEASE ANO SaLE: OISTRIBUTION 1S UNLIMITED. ”

CONTENTS

Abstract v

Iniroduction 1

System Architecture 2
Interfacing a Languaqge 5
PI-1/ECL Example 6
Conclusion 9

References 11

ABSTRACT

A Programmer s Interface (Pl) is a system whic. transforms an Interpretive language
Into a programming system by providing a language-independent set of "environment® tools
to ‘be used in conjunction with the execution capablilities of the iInterpretive Ianguage.
This ®environment® consists of tools for creating, editing, debugging, flilng and
retrieving programs, for automatic spelling correction, for modifying and relssuing
previous commands, and for undoing them to recover earijer states. A Pl thus greatly
ekpands the facilities avallable for program development wjthout affecting the
programming Jlanguage or Its capabllities. The‘ importance of such a transformation

cannot be overstated in terms of programmer productivity.

Any language with the follioving three properties can be interfaced to a Pl at a
fraction of the cost (several man-days versus several man-years) of creating a separate
sul table programming system [f3 1) there is a wvay to foim a coroutine Ilinkage betveen
the language processor and the Pl by interconnecting their I/0 ports; 2) the language
has an on-line evaluator and can fleld breaks or errors within a computation; and 3)
either in such breaks or at the top level, the evaluator can evaluate arblitrery forms in

that language.

A particular system (PI-1) has been constructed as an Instance of the Pl concept,
using INTERLISP, and it provides INTERLISP®s tools to Interfaced languages. This Pl has
been successfully intertaced to ECL wusing the ARPA Network as the communications
mechanlsm. The signiflcance of this work lles in the observation that very |l ttie of
the Pl or the capabiiities avaliabie iIn the INTERLISP programming environment are
fanguage-dependent, and in the experience gained in determining how a Pl should be
constructed and how languages should be interfaced to jt, rather thah in the Interfacing

betveen the Pl and any particular language.

This work Is of special relevance to large D0OD-Military software production
efforts. The research Is directed toward higher productivity and higher quality
software. This work Is sponsored under ARPA Contract No. DAHC15 72 C 0308, ARPA Order
No. 2223/1, Program Code No. 3D30 and 3PiO.

Preceding page blank 3

INTRODUCTION

This paper addresses the general probiem of creating a suitable on-iine environment
for programminge. The amount of software, and the effort required to produce it, to
support such an on-line environment is very large relative to that needed to produce a
programming ianguage, and Is largely responsible for the scarcity of such programmjng
environments. The size of this effort was largely responsible for the scrapping of a
majJor language (QA4[1]) as a separate entity and its Inclusion Instead as a set of
extensions in a LISP[2] environment. The few systems whi-h dJdo exist (e.g.. LISP,
APL[3]), BASIC[4], and PL/I[5)) bhave greatly benefited thelr users and have strongly

contributed to the widespread acceptance of the asscclated {anquage.

At a pbare minimum, a suitable programming environment consists of an on-line
Interpreter (or incremental compller), an Integrated interactive source-levei debugging
and editing system, and a supporting file structure. More extenslive environments wculid
Inciude such facilities as automatic speiling correction, structural editors, tracing

packages, test case generators, documentation faciiities, etc.

Looking at several programming environment systems, one recognizes much uniformity.
Most of the software supporting these systems Is similar In both Its organizational
structure and functions. The systems differ In detall more from style djfferences
between the system designers than from differences required by the programming

ianguages.

The Prograrmer’s Interface (Pl) concept attempts to explcit this uniformity by
creating a single prograrming environment capable of easily interfacing users with a
wide variety of on-line programming Ilanguages. Users would then have the fuil
facilities of this environment at their disposali. The Pl Is thus responsibie for
transformli.g these programmi ng LANGUAGES into SYSTEMS. The cost of providing such an
environment for a ianguage would drop from the several man-years nov required to the few
man-day: (estimated) to interface to a Pl. Additionally, the existence of a common

programming environment for many different Ilanguages would Justify the inclusion of

further capabilitiese.

Py

S = =

This common programming environment provided by a Pl should Include facilitlies for:
creating, modifying, storing, and retrieving programs; on-line debugging, including
trace and break facilities as well as the facliities of the lanyuage for evaluation of
expressions at breaks; modifylno the interface between routines (vla an ADVISE[6]
capability); automatic spelling correction; remembering, mod: fying, and reissuing

previous Iinputs; and undoinc the effects of any of these Pl facilities.

Such a Pl has been constructed and interfaced to the programming language ECL[7].
The remainder of this paper explains the Pl concept in terms of thls implemented
program. The deficlienclies of this particular Implementation are dlscussed in the

concluslon.

SYSTEM ARCHITECTURE

The facilities provided by the Implemented Programmer”’s Interface (PI-1) are based
on the INTERLISP system (formerly BBN-LISP)[2]. In fact, they are the facilities of
thls system, as modl fled for language Independence. The Programmer’s Interface itself
ls implemented in INTERLISP and coexlsts with the facilltles It lnvokes to provide the
programming environment. INTERLISP was chosen as the basls both because It already had
an extensjve set of programming tools In an accessible form, and because their structure

and operation could easily be altered to operate as required for a Pl.

The system structure is shown in Flgure 1. The ARPA Network[8] 1is used as the
communications mechanism between PI-1 and the user”s language processor. This choice
has three advantages. First, it allows che iInterfacing of PI-I to any language
processor avallable on the ARPANET |ndependent of what machine It runs on. Second, this
Interfacing can be done by PI-] without the knowledge of the language processor. Thus
no modlficatlons to the language processor are required. Flnally, the use of the
Network greatiy simplifies implementing the interconnection by alloving externci
character strings to be used for communlcatlon, rather than Internal data structures

with the attendant Inccmpatlblilty problems.

Store command
in history

LISP Who should

l ‘ process it?
Perform
action

Any
user language
component ?

Yes User's
language

Put value
in history

|

Echo
suppression

| : 4

ARPANET ARPANET

Generate
output

User's languoge | |
processor

Figure 1. System architecture

Three properties are requlred of a lanauage processor for its use wlth a PI:

1) There ls a way to form a coroutine[9) linkace between the languane processor and the
Pl by Interconnecting their 1/0 ports. This type of llnkage |s discussed in detail
In [10]. Kith Pl-1, the ARPA Network provides this llnkage. Thus, for PI-1, any

language processor available on the ARPANET satisfies the first requlrement.

2) It has an on-line evaluator (elther an interpreter or fast compiler) and can field

breaks or errors within a computation.

3) It can evaluate arbitrary forms in that language either in breaks or at the top

level.

PI-1 begins processing user Input by storlng It in a hlstory list used by the
Programmer®. Assistantl6), an INTERLISP subsystem, to retrieve, edit, group, rel ssue, or
undo prevlous commands. PI-1 then examlnes the lnput to determlne whether 1t should be
processed by an INTERLISP +acillty or by the user”’s lanquage processor. Basically,
environment-type activitles, such as loadlng files, editing programs, advlslng a
functlon, etc., are performed withln PI-1, while expresslons 1n the user”s language to

be evaluated are passed to the language processor.

if the user’s Input is Intended for hls language processor, 1t |s passed across the
ARPA Network to that language processor. Any output generated by the processor is
recelved across the Network agaln by PI-1. It suppresses the echo of the Input and
passes the output to the user, extracting from It the "value" and puttlng it Into the

history llst for use by the Programmer” s Assistant.

If the user’s lnput Is an envlironment-type command and should be performed withln
PI-1, the appropriate facility Is Invokeds In simple cases the operation completes,
returns a value that is put 1n the hlstory, and another lnput 1s processed. In more
compiex sltuations, some Iinteraction Is required durlng the operatlon with the user”s
‘anguage processor. This is accompllshed by dynamlcally generating a series of Inputs
for the language processor that wiil have the desired effect or return the deslred

information. These are passed through the communicatlons mechanisms to the processor;

Its output |s captured; and either the success of the modlflcations is verified or the
desired Informatlon Is extracted. Any number of such cycles may be requlred before the
Pl-1 facility completes Its processing of ti)e user’s command. As an example, consider
the loading of a flle. As the 7unction deflnltlons are read In, they are stored as a
property of the corresponding atoms to be used by the PI-1°s editor for any
modl flcations required later. The function deflnitlions also are passed to the language
processor .o that it can use these for evaluation. Thus, one cycle Is required for each

function defined In the file.

PI-1 maintains a copy of all functions defined by the user and thls Is used vy
PI-1”s editor when the user alters the definition. Whenever this deflnitlon changes (by
redefinition or thrcugh exiting the editor), the resuiting definition Is passed to the

language processor as a new definition of the functione.

INTERFACING A LANGUAGE TO A PROGRAMMER’S INTERFACE

Most of PI-1 Is language-independent, but certaln portions must be medified to
accept a new language. These fall Into the categories of syntax modl fication,

synchroni zation, program vwritlng, and debugging.

The INTERLISP editor used by PI-I |s structural rather than string-oriented. To be
effective, the text |t 1Is manlpulating must have a structural basis. The syntax
modification routines are responsible for Introducine the structure Into the user’s
language (only for use within PI-i). This structure is of two forms. Flrst Is the
grouping of characters into lexlcal units. The user’s language may have very different
lexical grouping rules than LISP and the syntax modlfication package Is responsible for
the lexical analysis. Second, the lexlical units thus produced are grouped Into larger
unlts by the use of parentheses. These units can be nested within one another to form
the famillar LISP S-expression structure. The designer of the syntax moditler must
decide wherz to introduce thils structural grouping. In ALGOL-1lke languages, a natural
place would be to group the lexical unlts of a statement together and groups of
statements vithin blocks tocether. The structural grouplngs selected are lntroduced

Iinto all program text [nput by the user, and used by him to direct the editor Iin its

modiflcations of this text. When this text |s passed to the language processor, those
structurai groupings artificially introduced for editlng purposes are removed before

transmissione.

PI-1 and the languace processor must be synchronlzed and kept |In step vlth each
other. Loglcally this is very simple and is accomplished by having PI-i wvalt untli the
language processor has completed evaluating the prevlous input before giving 1t another.
This situatlon is signaied by the language processor “s attempt to read the next Input.
Unfortunately (due to a deficlency in the network protocol), this Information ls not
aval lablie. Therefore the language processor”’s state of readiness must be determlned by
examination of Its output stream. Fortunateiy, most on-iine language processors
explicitly indicate their readiness for more input by provlding tne user wlth a prompt
character. The language processor”’s output must be scanned for this prompt and this 1is

used as a synchronization mechani sm between Pl-i and the language processor.

Severai facilities within Pl1-i, such as break, trace, and advlse, cause additionai
statements to be written into the user’s program for evaluation at runtime. The

inter facer of a new language must specify the form of these additions.

PI-1 contains many advanced debuggina capabillties not found in most Ianguage
processorse These aids are ali based on information gathered durlng executlon or at a
break point vithln the proaram. To use these facilities, the designer of the language
inter face must supply routines that provide the baslc informatlon on vhich these

debugglng aids &re buiit.

PI-1 took approximately three weeks to Impliement and debug, includlng the language
interface to ECL. Although no other ianguage interfaces have yet been bullt, it is
estimated that an inter.ace to another sultable language could be desl gned, Implemented,

and debugged in less than a veek.

Pl-1/eCL EXAMPLE

The foliowing actual exampie Indicates the use of PI-i with the programming

language ECL. The prompt character (as deflned by ECL) is either ->, *, or a number

foliovwed by :>. Commentary is enciosed in square brackets. |

~> 3+4 [Input of expression to be evaluated.]

7 [Answer returned.]

~> TESTI<-EXPR(ASINT,BIINT,INT)BEGIN A+B; END; |
[Define a functlion,TEST1, which takes 1
twvo Integer arguments A and B and returns |
their sum. Syntax Is precisely as
defined for ECL.]

(TESTY) [TEST1 defined.]

-> TESTI(3,4) [Invokz TEST! with arguments 3 and &4.]

7 [Answer returned.]

-> EDITF(TST1) [Ed t TEST1. Notice misspeliilng corrected by
system.]

= TESTI

EDIT

*pp [Prettyprint it. Notice how structure

has been added to its internal repre-
sentation.]
(EXPR (A ¢ INT , B 3 INT ; INT)
(BEGIN (A + B)
END))

*F BEGIN P [Find the item “BEGIN® and print what
is fourd.]

(BEGIN (A + B) END)

*(2 (A GT B => A-L; A+B))
[Replace the second element, the Iist A+B,
by the remainder of the input. This Is a
condltional form in ECL which evaiuates
A-B If A Is greater than B and A+B
othervil se.]

*pp [Prettyprint result. Agaln notice how
structure has been added.]

(BEGIN (A GT B => (A - B))
(A + B)
END)

*(-4 (A=B -> B <- 2*A))
[Insert rest of Input before fourth
element of current structure (the
END item). Additlion says to set
B to 2*A |f A=B.]

*pp [Prettyprint it.]
(BEGIN (A GT B => (A - B)
! (A + B)
(A =8B ->(B<=-2m=4))
END)

*UNDD {User notices hls error (addition made at
wrong spot) and asks system to undo last
command.]

(-4 --) UNDONE.

*pp [Check to see that it“s really gore.)

(BEGIN (A GT B => (A - B))
(A + B)
END)

*SE -3 FOR -4 [Substitute -3 for -4 In the In-
sertion command and relssue It.]

*pp [Make sure addition put In correct spot.]

(BEGIN (A GT B => (A - B))
(A=B => (B <= 2% 4))
(A +B)
(END)

*(K [Exit editor.]

TESTI

-> TESTI1(3,4) [Test function. A is iess than
B, Jjust add them.]

-> TEST1(4,2) [A greater than B, subtract
B from A.]

|

-> TESTi(4,4) [A=B, double B and add in A.]

12

—

=>ADVISE(TEST) BEFONE (A<= 2%A))
[Modify TEST1 so that before it
is entereu, but after its parameters
heve been bound, the value of A
is doubled.]
(ESTI
-> TESTI1(3,4) [Invoke mocified function.)
2 [Double 3 te cet € and subtract 4.]
-> USE 6 3 1U FOR &
[Successively substitute 6,3, and 10
for 4 jn the last statement.]

18 [TESTI(3,6)] }
3 [TETI(3.3)]
16 [TLSTI(3.10))

=>ADVISE(TEST] AFTER (VALUE\\ <- VALUE-1))

[Modi fy TESTI so that after it is
fini shed, but before it returns,
the value to be returned is dec-
remented by 1.]

TESTI

-> REDD USE [Re}l ssue the previous USE command
(which generated the 3 invocations of
TEST1)]

TYPE FAULT

- BROKEN

NIL

TYPE FAULT

- BROKEN

NIL

TYPE FAULT {3 type fault error occur.]

- BROKEN

NIL

3;>RETBRK(O) [Go back to top ievel.]

NIL

-> TEST1(3,4) [Try simple case.]

TYPE FAULT [Error still occurs.]

- BROKEN

NIL

13> IN? {Where did error occur?]

IN ENTRY OR EXIT OF-

IN TEST)...

VALUE\\ <- VALUE -1
[{Error occurred in entry or exit of minus
routine which wvas invoked from TESTI in
the statement VALUE\\<-VALUE-1. User
spots error (use of the undeclared
varlable VALUE instead of VALUE\\).]

I3>§DITF(TESTI) [Edit TEST1.]
EDI
*F VALUE 0 P {Find the use of VALUE. Go up one

structured ievel and print group.]

(VALUE\\ <- VALUE -1)
*R VALUE VALUE\\ [Replace VALUE by VALUE\\.]

*0K [Exit editor.]

TESTi

135TESTI(3,4) [Try test case again.]

(i) [Do?b;e 3, subtract 4, then decrement
by 1.

1" [Go up one level of error, In thls
case to top level.]

NIL

-> REDO USE [Reinvoke previous USE command.]

(17) [TEST1(3,6)]

(2) [TESTY(3,3)]

(is) [TEST1(3,10)]

CONCLUSION

An extenslve programml ng envlronment has been created for the ECL language through
a program (PI-i) which allows the use of the already existing INTERLISP facllltles.
This greatly expands the user”’s facilitles for creatlng, edlting, and debugglng hls
programs. Hls programming language has been transformad Into a programmlng system. The
avaliabl)lity of a comprehensive set of "environment” tools worklng in conjunctlon wlth

the programmer ‘s language 1s extremely Important to hls productlvity.

The signlflcance of thls work, however, lles not In the particular Interface
provlded between INTERLISP and ECL, nor In the extenslve capabl fitles provlided the user,
but rather, In 1) the observatlon that very llttle of the Interface Itself, or of the
capabllities provided, are language-dependent; 2) the recognl tlon that the programmlng
envlironment can be effectively spilt Into an "environment®™ part and an executlon and
evaluation part; and 3) the experlence galned from buildlng such a system and

Interfaclng a language to It.

Pl1-il, however, suffers from a number of deficlencles, the most important of whlch
ls the use of aiready exlstlng tools in more general envlronments than they were
deslgned for. Thls was most notable in the use of LISP’s editor for nonstructured text
(and the need therefore to lntroduce structure by parentheses) and the need to replace
LISP s Input routines to provide the proper lexlcal analysls for the Interfaced
language. Both of these problems could be avolded In a PI by having 1t use the syntax

descrlption of the language to guide the lnput, and edltlng and dlsplay of programs.

One of the strengtiis of the P] concept |s the spilt between the "envlronment® part

and the evaluatlon part. This split, howvever, Introduces the problem of communlcatlon
and synchronl zation; each part must keep the other Informed about changes 1t makes that
affect the other. In Pl-1, thls comnunlcatlion and svnchronjzation was parclal and
clumsy. The flov of Informatlon from the envlronment to the evaluation part wvas
adequate, but the reverse flov was not. The need to communlcate to another program
sultable explanations of what the state of the evaluatlon was, wvhat the cause of the

error was, or even that an ervor occurred vas slmply not en isloned or planned for.

PI-1 has thus demonstrated that a mocerately Integrated Pl can be bullt that bhas
facllltles far beyond what js typlcally avallable at a fractlon of the cost. However,
development of highly Integrated Pl wlll have to awalt a better wunderstanding of the

functjonal requirements ot a language processor In such an envlronment.

Although the Programmer ’s Interface has only been Interfaced to one language (ECL),
and although It only contalns a small fractlon of the capabllities ultimately desired,
it is havling a major efiect by actlng as a prototype for a major software project
[11,12] being undertaken to develop thls understandlng and provlde a single, common,
comprehensive programmi ng envlironment Interfaced to a wlde varlety of languages running
on many - fferent machines communlcating through a network. New languages or machl nes
cou'd be interfered to the system at a fraction of the cost of provldlng a separate
programmlrg environment. Wl despread usace would Justlfy the expenditure of more
resources to aucment and Improve the capabilltles provided. Such a Pl could free wusers
from having to develop thelr programs only with softvare avallable on thelr own machines
and could provlde a much rore comprelensive and coordinated software development package

than ls currently avallable.

10

1

12

REFERENCES

Ruli fson, Je Fe, Jo A. Derksen, and R. J. Waldinger, QA4: A Procedural (Calculus
for Intulitive Reasoning, Stanford Research Institute, Artificial Intelligence
Center, lechnical Note 73, November 1972.

Tei telman, W. D., G. Eobrow, A. K. Hartley, and D. L. Murphy, BBN-LISP TENEX
Reference Mapnuail, Bolt Beranek and Newman, Inc., Cambridce, Mass., July 1971.

Falkoff, A. D., and n. E. Iverson, The APL Terminal System: Instructions for
Operation, IBM Corporation, T. J. Watson Research Center, Yorktown Heights, New
York, March 1967.

Keme.y, J. G., and T. E. Kurtz, BASIC Programming, John Wiley and Sons, Inc., New
York, 1967.

18M Corporation, C/S i1ime Sharing Uption: PL/I Checkout Compiler, Form SC33-0033,
November 1971.

Telteiman, W., “Automated Programming - fhe Programmer “s Assistant,” in the AFIPS
Conference Proceedings, Vol. 41, Part 11, AFIPS Press, Montvales, New Jersey,
1972, pp. 917-921.

Wegbreit, B., "The ECL Programming Systems,” in the AFIPS Conference Procuedings,
Vol. 39, AFIPS Press, Montvale, Nev Jersey, 1971, pp. 253-262.

Roberts, Le G., and Be Do Wesslier, *Computer Network Development to Achieve
Resource Sharing,® In the AFIPS Conference Proceedings, Vol. 36, AFIPS Press,
Montvale, New Jersey, 1970, pp. 543-549.

Conway, M., *Design of a Separable Transition-Dlagram Complier,” Communications of
the ACM, Vol. 6, No. 7, July 1963, pp. 396-398.

Balzer, R. M., Ports - A VMethod for Dynamic Interprogram Communication and Job
Control, The Rand Corporation, Tanta Monlica, Callf., R-605-ARPA, August 19/1.

Balzer, R. M., T. E. Cheatham, S. D. Crocker, and S. Warshall, National
Software Works Design, USC/Information Sciences Instlitute, RR-73-16, (In
progress).

Balzer, R. M., T. E. Cheatham, S. D. C(Crocker, and S. Warshall, The Natlonal
Software Works, USC/Information Sclences Institute, RR-73-18, (In progress).

